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An exact analytic solution of the shallow water equations for the motion of a bore over 
a uniformly sloping beach is derived. This solution is valid only when the initial bore 
is supercritical. The results agree very well with those of Keller, Levine & Whitham 
(1960). 

1. Introduction 
The problem of a bore travelling shoreward into water at rest on a sloping beach was 

first studied as an application of Whitham's characteristic rule (Whitham 1958). This 
rule, in effect, assumes that a differential relation, holding strictly along a positive 
characteristic, is applicable to the flow quantities immediately behind the bore and 
provides an approximate formula for the variation in the strength and height of the 
bore. The results of the approximate rule agreed well with the numerical solution of 
Keller, Levine & Whitham and the behaviour of the bore near the shoreline was found 
to be completely independent of the initial motion producing the bore. 

The characteristic rule was connected with the modulated simple wave theory of 
Varley, Ventakaraman & Cumberbatch (1971) by Sachdev & Seshadri (1976). 
Specifically, to derive an approximate solution the flow in the entire region behind the 
bore was assumed to be a modulated simple wave. 

In the present paper we adopt an exact analytical approach. To obtain an explicit 
solution we consider the shallow water equations in the semi-characteristic plane 
(a,P), such that the level lines a = constant have slope equal to the particle velocity 
u, and P = constant demarcates a negative characteristic. The legitimacy of this co- 
ordinate system is not obvious. However, since the analytic solution to be sought here 
involves a sufficient number of arbitrary functions, the propagation of the bore is 
described accurately up to the time for it to reach the shoreline. 

2. Formulation 
We consider the propagation of a bore on a beach of constant slope hh for 

0 < x < x,. If gP1c2 is the depth of the water (where c is sound speed) and u(x, t )  is the 
particle velocity, the equations of shallow water theory are 

(2-1) 
(2.2) 

(u-U)c2+H0U=O,  (2.3) 
(2.4) 

ut + uu, + 2cc, = Ht, 
Ct + uc, + kcu, = 0. 

Here, the prime denotes differentiation with respect to x. The bore conditions are 

c'(c' + H,) - 2H, U 2  = 0, 
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FIGURE 1. The (x, t)-diagram for u1 > cl. 

where U is the bore velocity. In writing (2.1)-(2.4), u, c and U have been normalized 
by (gh(O))i, the distance x by xo and time t by xo(gh(0))-i.  

We assume that 

and that the bore moves with a constant speed in the region x < 0, and arrives at 
x = 0 at time t = 0. 

For the case when the bore is initially supercritical, i.e. constant values behind the 
bore are such that u1 > cl, the (x, t )  diagram is shown in figure 1. Here, the flow is 
undisturbed with u = u1 and c = c1 in the region x d 0. 

We introduce the variables a and P according to 

a, + UCL, = 0, (2.6) 

Pt+(u-c)P, = 0, (2.7) 

as the new independent variables. This implies that P remains constant along a 
negative characteristic; c1 = constant is not a characteristic curve of equations (2.1) and 
(2.2). In consequence of this (2.1) and (2.2) may be transformed as 

U, tp - (Up + 2cp) t, = 0, 

(up+2cp)t,+(t,-2c,)t, = 0 .  

The variables x and t are now dependent variables, which from (2.6) and (2.7), satisfy 

x ,  = (u - c)  t,, (2.10) 

xp = utp. 

Ct@+ 3t, cp = 0, 
Cross-differentiation yields 

(2.1 1) 

(2.12) 

which integrates to give t, = c-3F(a), (2.13) 
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where F(a) is an arbitrary function of a. We may note from (2.8) and (2.9) that 

u - ~ c +  t = GV), (2.14) 

where G@) is a function of its argument. On using (2.14) and assuming that 

c = c ( / ~ ) ,  F =  1, (2.15) 

we observe that (2.9)-(2.11) and (2.13) admit an exact solution: 

~ ( a ,  p) = i(G + K )  - t ,  

t(a, p) = I@) + C%, 

(2.16) 
(2.17) 

~(p) = :(K- G ) ,  (2.18) 
(2.19) x(a, p) = (U - C) ( t  - I )  + +( t - 1)' + QV), 

where Q(P) satisfies the relation 

d l  _ -  dQ - [;(G+K)-I]- 
dP 43' 

(2.20) 

Here, the choice of c and F as made in (2.15) does not change the behaviour of flow 
variables behind the bore, for a varies very slowly along the negative characteristic 
p = constant. We may choose G = p, since the independent variable p does not appear 
explicitly in (2.16)-(2.20). Solution (2.16)-(2.19) now involves only one arbitrary 
function, namely I@). To obtain the solution in the entire region behind the bore, we 
rewrite u, c, t and a as functions of x and p. In the region OCD the solution is given 

(2.21) 

where Il = I&), Q, = QV1) with p = p1 as the first negative characteristic originating 
from x = t = 0. If Z, = 0 and Q, = 0, this satisfies the boundary conditions exactly on 
the line OD separating the uniform region. 

The above solution is valid at least until the formation of a second bore. We notice 
that the characteristics which originate in region x -= 0 have the same slope in x > 0, 
while the characteristics emanating in x > 0 fan out downstream more than those from 
x < 0. This shows that the negative characteristics do not intersect anywhere in the 
region x > 0. The second bore, therefore, is not a reflection of the original bore, but 
a hydraulic discontinuity formed by backwater down the beach. 

by 

} 
U = U 1  - t ,  c = c,, 
x = ( ~ 1 -  cl) ( t  - 1,) + +( t - 11)' + Q,, 

t = c;", 

Equation (2.19) when evaluated at the bore, yields the bore path 

X, = (U - C)(tb -1) + i ( t b  - 1)' + Q, (2.22) 

where xb and t ,  are the coordinates of the bore. Equations (2.16)-(2.20) also yield that 

M = UH-f K Hit, H -  Ha K H i  (2.23) 

as Ha+O when M is large. This asymptotic result has been noted earlier by Keller 
et al. 

3. Discussion 
For computation, we have chosen 
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at x = t = 0. Figure 2 shows the results for the initial bore velocity U = 8.12. The 
corresponding initial flow behind the bore is supercritical. In this case bore height 
N ( =  cz-HH,) decreases and U increases all the way to the shoreline. Moreover, as 
H,+O, u and U approach the same limiting value. The results are in such close 
agreement with the numerical solution (figure 3b of Keller et al.) that they are quite 
indistinguishable. Figure 3 shows the variation of u along CL = constant and /3 = 
constant, while that of c is shown in figure 4. Since c remains constant along /3 = 
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FIGURE 5. The flow behind the bore: height N and particle velocity u for N(0) = 10. 

constant, a very small variation in u makes the negative Riemann invariant virtually 
constant along a negative-going characteristic C- : dxldt = u - c, which in the physical 
plane represents waves reflected from the bore, and monotonically increasing with the 
bore strength; the value of increases as the bore strength increases. This result is 
consistent with that for flows headed by a shock (see figure 1 of Sirovich & Chong 1980, 
and figure 4 of Chong & Sirovich 1980). The flow behind the bore as described by the 
present solution is shown in figure 5.  Again, graphical comparison between the analytic 
and the numerical solution (figure 4 b of Keller et al.) is not possible, since they are 
practically indiscernible. The prediction of the absence of a second bore as a reflection 
of the original one is in consonance with the absence of a subsidiary shock in regions 
of expanding area changes (Friedman 1960). We have not compared our results with 
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those of Sachdev & Seshadri because they are approximate. Unfortunately, if u, < c,, 
the solution (2.16)-(2.19) breaks down too soon. For the case when N(0) = 0.25, 
for example, the solution at the bore matches that calculated by Keller et al. only 
for 0 < x < 0.23. It happens in this case because I increases and becomes equal to 
i (G+K)  at x = 0.23; I attains a maximum value at x = 0.56, making u zero and 
t decrease thereafter. 
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